Новосибирск познакомиться с девушками увлекающимися бандажом

Суханов Сергей Владимирович. До и после Победы. Книга 1. Начало. Часть 3

Знакомства девушек в Новосибирске для серьёзных отношений, брака или дружбы. «Две сотни девушек, стоявших полукругом, одновременно вскиды вали голую ногу обще не есть! Как это — не знакомиться с незнакомыми людьми?. Да и с бандажом многое зависело от машиниста - если он сначала " дождется" тысяч юношей и девушек стали значкистами " Ворошиловский стрелок", ГТО, ГСО. Так что впоследствии мне оставалось только знакомиться с . Мне же оставалось только подправлять увлекающихся.

И только потом, по спавшему лицу мастера, понял, что деталь-то была под напряжением - ученик как раз собирался отрабатывать на ней сварку по кругу. Меня же заинтересовала именно выемка - она повторяла контуры электрода. Тот ткнул электродом, но ничего похожего обнаружено не. Вот с маслом на металле снова образовалась выемка, причем при последующих тыканьях она понемногу углублялась. Так мы открыли электро-искровой способ обработки материалов, правда, на тот момент мы его так еще не называли, и уж тем более не знали, что его же изучали и в Москве еще с тридцать восьмого года.

Так что мы посадили на это дело пару учеников под присмотром мастера, и они начали пока набирать статистику - как лучше и эффективнее искры выбирают металл. Причем лучше они делали это именно в масляной среде, хотя и в газовой тоже работало, но по другому.

А уже через пару недель, проезжая там же, я наблюдал, как с помощью новой технологии доставали сломавшийся метчик - искрами пробили в метчике глухое квадратное отверстие, воткнули в него торцовый ключ и вывернули обломок.

Причем проделали отверстие довольно быстро, со скоростью примерно три миллиметра в минуту, и это - в легированном и закаленном металле. Как мне сказали, электрорезка в минуту делала рез площадью пятнадцать квадратных сантиметров, а электрошлифовка снимала около тридцати грамм твердого сплава - народ поупражнялся с разными материалами и приемами работы, а я понял, что направление надо срочно усиливать людьми - сейчас на изучении новой технологии помимо тех двух учеников и мастера работало на общественных началах еще с десяток человек - людям было интересно пощупать новую штуку - "Естественно, не в ущерб основной работе" - заверил меня мастер.

Дело нужное, тем более что методы наплавки и упрочнения поверхностей электроразрядами тут уже использовали - например, разношенные желоба для поршневых колец тут восстанавливают до нужных размеров навариванием металла с применением электросварки. А для упрочнения использовали работы Дульчевского от двадцать восьмого года, он же, кстати, в тридцать девятом получил патент на наплавку реборд вагонных колес с применением нескольких автоматических сварочных головок - тут перед войной уже начали самостоятельно собирать такой автомат, но не успели.

Так что опыт применения электричества в обработке металлов тут был, да и другие методы управления формой и характеристиками металлических поверхностей мы как минимум начинали щупать. Так что и искровая обработка пошла в тот же пул новых технологий. Да и обычные технологии обработки металлов тоже понемногу прогрессировали, подстраиваясь под самое для нас сейчас главное - ремонт танков.

Показателен в этом плане ремонт паровозных кулис, для которого требуется перемещение стола по дуге радиуса кулисы - для этого, оказывается, существует специальный вертикально-фрезерный станок типа Рейнекер. Это я почему заостряю на этом внимание - раньше я как-то считал - ну, есть фрезерные станки обычного типа - и достаточно, и ладно. Ладно-то ладно, вот только не для всех работ они подходят. То же движение по дуге - да, можно смоделировать и на обычном фрезерном, но требуется очень высокая квалификация фрезеровщика, чтобы он с помощью прямолинейных перемещений стола и фрезерной головки повторил бы это самое движение по дуге.

Ну или сделать приспособление, которое будет выполнять это движение. Это я еще опускаю момент - как закрепить длинную деталь на сравнительно коротком столе - потребуется его наращивать, да чтобы он выдерживал нагрузки от обработки, да и вести ее придется с меньшей подачей. Так что длинный стол - это не только удобство, но и скорость обработки. Ну и отдельный - специализированный по заготовкам большой размерности - станок - тут уж ничего не попишешь.

Это я к тому, что прежде всего наличный станочный парк обуславливает скорость, трудоемкость изготовления деталей - помню, видел в Ю-Тубе, как китайцы делали фланец диаметром метра полтора. Съемка уже десятых годов. Обстановка - модели "полузаброшенный гаражный кооператив" - бетонные заборы с зарослями травы, небольшие строения, покрытые шифером, пыльная площадка с то ли бетоном, то ли вообще утоптанной землей - тут и трудятся китайцы. Достали погрузчиком из печи квадратный стальной слиток толщиной сантиметров двадцать и со стороной под полметра, поставили вертикально на угол между вертикальными же пластинами - чтобы не завалился - и - тюк сверху железной чушкой, чуть повернули ломами - чушка поднялась хорошо хоть электромотором - и снова - тюк - и так раз пятьдесят - повернут - тюк!

Сделали из квадрата неровный круг - и в печь, так как за это время он из желтого стал темно-красным. Нагрели, достали, положили плашмя, поставили по центру обрезок трубы - и снова сверху - тюк-тюк-тюк - продавили обрезок и вырезали-таки середину - получился толстый бублик, только с прямыми краями.

Опять нагрели, продели на трубу, поставили подпорку - и, проворачивая каждый раз ломами - тюк-тюк-тюк - стали ударами раскатывать во все более тонкие стенки. Уж не знаю, сколько по времени это заняло - ролик шел минут двадцать, но с пропусками, так что, думаю, часа за два, может, за три - управились.

Ну а потом отвезли это кольцо на металлообрабатывающий завод и там уж обточили. И рядом на том же сайте лежал ролик с немецкого завода - начали, правда, уже с заготовки-бублика, но - поставили его на спецстанок - и между двумя постепенно сходящимися конусами откатали кольцо чуть ли не за полминуты - оно так и осталось желтого цвета - экономия и времени, и энергии.

Это я к тому, что буквально на коленке можно сделать многое, если не все - вопрос лишь в трудоемкости. А способом ее снижения, как я понимаю, являются специализированные станки, устройства и приспособления, которые предназначены для выполнения узких задач, но быстро и массово. Не знаю, может это я Америку открыл, и тут все про это в курсе, ну и ладно - относятся к этому с пониманием и поддержкой - уже хорошо. Им же все это и делать. Хотя одни и те же вещи тут делали по разному. Например, поршневые кольца паровых машин делаются из чугунных барабанов - те отливаются, как и втулки для цилиндров, затем на токарном станке грубо обтачиваются и растачиваются, затем разрезаются на кольца, и уже дальше идет обработка каждого кольца - прорезать замок на фрезерном станке, затем свести кольцо хомутом и обточить на токарном до нужного размера, и затем дошлифовать боковые грани.

А если есть карусельный станок - то могут обрабатывать сначала сам барабан, а разрезать его на кольца уже в конце процесса. Повторюсь - для каждой детали может быть несколько вариантов изготовления, и у кого какое оборудование есть - тот исходя из него и строит технологический процесс. Но основная сложность - это правильно все вымерять и закрепить. Ну или сделать приспособления, в которые устанавливать детали - тут уж сложности, связанные с измерениями, перекладываются с изготовления детали на изготовление приспособления и создание на заготовке базовых плоскостей и отверстий, по которым деталь будет базироваться в приспособлении.

Другое дело, что изготовление того же крейцкопфа - дело нечастое, поэтому делать для него кучу приспособлений просто нет смысла - трудоемкость их изготовления будет сравнима с трудоемкостью изготовления самих крейцкопфов лет за десять, а если на участке обслуживается несколько типов паровозов, то и за все время работы депо. Вот если бы крейцкопфы делать массово и для одной модели - наличие специализированных приспособлений имело бы смысл.

Но такое делали даже не на всех паровозостроительных заводах, отсюда - и недостаток крейцкопфов, да и других деталей, на замену, отчего их приходилось делать в том числе и в депо - несмотря на социалистический строй, про который бытует мнение, что он сильно централизован, централизацией в изготовлении деталей тут и не пахло - каждый ваял их на свой манер и с соответствующими трудозатратами, на круг - в масштабе страны - равными, пожалуй, утроенной трудоемкости изготовления паровозов - специализация-то у рабочих по деталям отсутствовала - сегодня одно, завтра - другое, и каждый раз надо примериваться, как бы это изготовить - потери на подготовку были колоссальными, да и не каждый мог еще и изготовить какие-то детали.

И это в каждом депо. Неудивительно, что квалифицированных рабочих постоянно не хватало, а стоимость обслуживания зашкаливала и компенсировалась лишь невысокими зарплатами и неустроенностью быта. Ну это я так, пока присматривался да ворчал про себя - сами-то люди, ну, которые не начальники, а рабочие - были непричем, даже наоборот - герои, которые могли сделать буквально все - дай только металл и время.

Ну и не пили мозги постоянным "давай-давай". Вот начальство, которое по идее должно все это продумывать и организовывать, как-то мне не нравилось - не наблюдалось такой масштабной организации - все какие-то заплатки и костыли. Может, просто не хватало времени, может - знаний, а может, это я чего-то не понимаю. Собственно, мы - я - сейчас создавали такие же костыли, но под нашу конкретную ситуацию.

Так что не мне пока кому-то пенять. Но, как мне тут рассказывали, в той же Америке паровозы отбегают пять-десять-пятнадцать лет - и на переплавку. Могли себе позволить за счет массового выпуска паровозов, но мне вот было интересно - за счет чего они обеспечивали этот выпуск?

По населению они на треть меньше СССР - у них примерноу нас - миллионов Причем в СССР вполне понимали проблему - как писалось в книге "Курс паровозов" от тридцать седьмого года, которую я пролистал, чтобы быть хоть немного в теме - "Содержание ремонта в депо должно включать в себя не ремонт деталей паровоза, а замену неисправных частей запасными, имеющимися всегда в наличии в кладовой".

Все дело портили недостаток паровозоремонтных заводов и избыток моделей паровозов. В той же книге высказывалось благое пожелание прикрепить "к ремонтным заводам определенных обслуживаемых ими районов с минимальным количеством серий" паровозов, но пока это не было реализовано, в том числе и из-за недостатка высококвалифицированных рабочих, которые требовались в депо, потому что паровозоремонтные заводы не могли обеспечить весь потребный ремонт подвижного состава, прикрепленного к депо, потому что на заводах не хватало рабочих, которые трудились в депо, потому что Дело усугубляла и направленность на хозрасчет - "Проведение ремонта как в депо, так и по заводам на основе полного хозяйственного расчета с передачей в ведение начальника завода, начальника депо средств производства, материальных ценностей и кредитов" - нормально, да?

Вот и приходится отмечать, что "дело с изготовлением запасных частей заводами для депо коренным образом должно быть изменено. Мы должны не только резко повысить количество выпускаемых запчастей, что прекратит в депо развитие кузниц, литейных, работающих кустарно и непроизводительно, но и повысить их качество.

Запасные части, изготовленные по градациям и допускам, устранят необходимость ручной пригонки и сократят сроки простоя". Под градациями и допусками тут понималось намеренное изготовление одних и тех же запчастей, но слегка разных размеров - ведь износ посадочных мест и самих частей на паровозах может быть разным, соответственно, для конкретного ремонта необходимо снимать разное количество металла.

И чтобы минимизировать такую механическую обработку, и нужны детали, в размерах которых уже учтены эти возможные разбросы. Да, сколько-то снимать все-равно придется, но какие-то износы вообще попадут точно в размер одной из запчастей, какие-то износы можно будет починить меньшей механообработкой, наплавкой и шлифовкой - ремонт резко ускорится и потребует меньше операций, хотя платой за это и станет повышенное количество номенклатуры одной и той же запчасти.

Ну, этот момент можно было бы решить плановыми осмотрами - дошел износ до какого-то норморазмера - меняем на соответствующую ему запчасть. Вот только заводы пока не справлялись с поставками даже запчастей альбомных размеров - слишком большая номенклатура используемых паровозов и так требовала слишком большой номенклатуры запчастей, и в ближайшие годы переломить ситуацию не удастся - паровозов и так не хватало в том числе и из-за больших простоев при ремонтах - все та же "проблема курицы и яйца"а быстро сделать большое количество однотипных паровозов не получалось.

А в Белоруссии в связи с недавним расширением мощностей не хватало тем. Минский вагоноремонтный завод вырос из паровозовагоноремонтных мастерских, основанных в году, и к началу войны занимался ремонтом вагонов. А ремонтом паровозов занимался Гомельский паровозоремонтный завод.

Это я все к чему веду - железнодорожные депо имели станочный парк, приспособленный для довольно сложного ремонта таких объемных механизмов, как паровозы и вагоны. Но ведь такими же объемными механизмами являются и танки. А их у нас стало очень много - на местах прошедших в конце июня боев мы собрали более двух тысяч коробок - и это только наших.

Причем некоторые было достаточно лишь залить бензином или дизельным топливом - и шайтан-машина оживала. Другие, конечно, требовали ремонта, а порой просто раздербанивались на запчасти и металлолом. Но факт в том, что недостатка в технике мы не испытывали - мы испытывали недостаток в ремонтных мощностях.

Немцы, кстати, уже начали приспосабливать депо и металлургические с металлообрабатывающими заводами к ремонту танков - в одних только Барановичах мы захватили более ста единиц немецкой бронетехники разной степени покоцанности.

Ну и немецких техников-механиков тоже прихватили более сотни - это только тех, кто остался жив, кому повезло не быть сразу принятым из-за своей черной формы за эсэсовца с моментальным уничтожением. В общем, тут были оборудование и персонал для ремонта объемных металлических конструкций.

Взять те же паровозные рамы, на которых и покоились остальные механизмы. На раму действуют растягивающие-сжимающие и изгибающие нагрузки.

Первые - это сила давления пара в цилиндрах - штоку ведь надо толкать колесо - вот цилиндр и упирается в раму, тогда как колесо удерживается на ней же осью - и совместно они пытаются разодрать кусок металла, находящийся между. А изгибают раму, помимо веса оборудования, и динамические нагрузки - подпрыгивания на стыках и неровностях рельс, удары реборд о рельсы при проходе кривых, инерция при вилянии паровоза и состава. Все это может выгнуть раму - ее лист или отдельные бруски, они даже могут треснуть, как могут треснуть или ослабнуть и соединения - клепка или болты.

Старые рамы были листовыми, то есть состояли из одного широкого и длинного - метров - листа толщиной около трех сантиметров, к которому остальные агрегаты крепились клепкой, сваркой, болтами.

Причем это не простой прямоугольник - в нем проделаны разнообразные вырезы для механизмов и крепежа колесных тележек и котла, которые ослабляют и так не слишком жесткий лист. Так что неудивительно, что при езде он гуляет и, соответственно, в конце концов идет трещинами, а то и рвется.

Да и постоянные изгибы разбалтывают соединения - резьбовые, клепочные, сварные, так что их приходится часто проверять и подтягивать-подклепывать-подваривать, что удорожает и эксплуатацию таких паровозов - тупо требуется больше народа даже для текущего обслуживания. Это я к тому, куда уходит рабсила и почему ее вечно не хватает - конструкторские решения, зачастую вызванные недостатком технологий или оборудования, затем аукаются ее расходованием на поддержание машин и оборудования в работоспособном состоянии.

Несколько помогают ребра жесткости, но они же значительно увеличивают трудоемкость изготовления таких рам. Современные мощные паровозы все чаще имеют брусковые рамы, состоящие из длинных брусков толщиной от десяти до пятнадцати сантиметров, причем в СССР пока еще в основном применяются прокатанные бруски, тогда как в США их уже давно отливают, что снижает трудоемкость изготовления и потери.

Да чего там - в Америке уже начинают делать цельнолитные - "интегральные" - рамы, когда заодно отливают мало того что все ребра, соединения и междурамные скрепления, так еще и цилиндры. То есть рама и цилиндр - это единый массив металла. Неудивительно, что они могут клепать паровозы горстями, тогда как нам пока приходится долго прокатывать бруски, потом их соединять Хотя перед войной Ворошиловградский по-нашему - Луганский завод переходил на выпуск литых рам, пусть и без одновременной отливки цилиндров.

А перед соединением брусков в раму их еще надо как следует прострогать - если в листовых рамах свинчиванием болтами можно притянуть части рамного листа к креплениям за счет ее гибкости, то в брусковых жесткость бруска такого уже не позволит, так что без строгания контакт с крепежом будет неплотным, соответственно, он мало того что может быть неточным, так еще и быстрее разболтается, когда металл неровностей на сопрягающихся поверхностях начнет проминаться.

А строжка длиннющих брусков - это отдельная и длительная процедура. В депо, кстати, были строгальные станки, на которых выполнялся немалый объем работ - вплоть до сострагивания износившихся частей тех самых рам - ну, где были такие большие станки.

Так вот - строгальные станки меня приятно удивили. В школьные годы в УПК меня обучали работе на фрезерном, ну и немного на токарном станках, поэтому я искренне недоумевал - нафига нужны эти строгальные? Вместо того, чтобы елозить резцом туда-сюда - гораздо ведь быстрее профрезеровать все что нужно, так? Так, да не. Фреза - сам по себе сложный инструмент - и в плане изготовления, и в плане заточки - с резцом не сравнить.

Ну, ладно - резцы обходятся дешевле, ну то есть менее трудоемкие в изготовлении и обслуживании. Так ведь в ряде случаев они могут быть еще и производительнее! Если брать резцы с широкой режущей частью - скажем, сантиметр - а не те, у которых один острый угол - такие широкие резцы еще и дадут фору фрезам - ими можно снять нужные объемы в два, а то и в три раза быстрее, чем фрезой.

А если установить протяжку, с ее несколькими зубьями - так и вообще - порой р-р-раз! Так что я стал относиться к строгальным станкам совсем по-другому. Один раз мне даже показали как на них обрабатывать цилиндрические поверхности - просто сломался токарный станок, а деталь была нужна вот прямо сейчас - так рабочий закрепил ее в поворотной головке - ее еще называют делительной - с ее помощью можно делить окружность на углы - и, поворачивая ее после каждого прохода резца, он довольно быстро сделал детали нужный диаметр.

Хотя были тут и двухшпиндельные продольно-фрезерные станки, на которых также могли обтачивать, например, буксовые наличники. Правда, ремонт рам с полным разбором тут выполняли нечасто.

Обычно их пытались ремонтировать без разборки, ну, может, приподнимут котел, чтобы домкратами выправить изгиб рамы. А обычный ремонт заключался в восстановлении посадочных мест под крепления и отверстий - тут широко применялся переносной инструмент - наждачный круг, насаженный на электрическую или пневматическую машинку, переносной шлифовальный станок, шлифовальный станок, устанавливаемый на специальном стойле, переносные фрезерные и расточные станки, которые также крепились на раме.

Собственно, эту же технологию мы начали применять и для ремонта танков - расточить отверстия в броне, заменить втулки - работа для "паровозников" была привычной. В раме часто делали ремонт креплений котла.

Он крепится к раме не жестко, а на опорах, позволяющих ему, точнее его отдельным частям, двигаться относительно рамы, чтобы компенсировать температурные деформации при нагреве и охлаждении. А деформации бывали значительными, особенно если образовывался слой накипи, которая очень нетеплопроводна - даже незначительный - в один миллиметр - слой поднимает температуру труб котла с до градусов и железо выпучивается.

То есть необходимо делать периодическую промывку, чтобы убирать накипь. И тут тоже есть тонкости - при нагреве во время работы внутренние части котла - топка, трубы, связи - удлиняются, скажем, на 25 миллиметров, а внешняя стенка котла - всего на 20 миллиметров - уже сама разница в пять миллиметров может привести к разрывам металла.

А в паровозах с медными топками - тех же "Щ" - разница достигает и 12 миллиметров. Так порой умники промывают еще неостывший котел а его стараются держать на одной температуре - чтобы не гонять туда-сюда температурные деформации холодной водой - более тонкие трубы охлаждаются быстрее, более толстые стенки топки и котла - медленнее - и привет - появляются надрывы и трещины. В упомянутой мною книге для таких работничков встречался более принятый в эти времена термин "вредители" - и я им не завидовал.

Суровые времена - вот так вот взять и обвинить человека не в дурости, а в сознательной порче. Я сам порой замечал, что народ слишком нервно относится к косякам - что своим, что. И ладно бы дело было просто в обвинениях и доносах - так ведь народ порой из-за этого пытался их просто скрыть - а это уже подлянка, подложенная другим свинья, и, с учетом ведущихся боевых действий, "хрюкнет" она скорее всего в самый неподходящий момент - когда не только времени нет на исправление чужих косяков, но когда сам этот косяк может привести к гибели другого человека.

Так что я постепенно вводил, как я его называл, "режим понимающего отношения", хотя некоторые называли это излишним благодушием, потворствованием, и прочими нехорошими словами. Может, так оно и было - но сразу ведь не разберешься, и если гнобить людей за малейший косяк - людей-то и не останется. Нам ведь приходилось набирать в производства порой совсем неопытных людей - лишь бы голова варила.

А без опыта - то есть знания тонкостей - косяки просто неизбежны - слишком много нового человек сразу не усвоит, поэтому упущения возможны и даже наверняка. Мы, конечно, административными мерами старались снизить количество нового в единицу времени, чтобы человек успевал адаптироваться - вводили и ограничения по сложности выполняемых работ, и пониженные нормативы на первый период - но косяки все-равно случались.

В общем, помывочная техника была в депо очень развита, и мы применяли ее для ремонта танков. Ведь перед ремонтом танк надо помыть, иначе та же грязь и следы масла, оказавшись в районе свариваемого шва, испортят его нафиг, напитав лишним углеродом, водородом и прочими лишними элементами. И тут паровозные мойки пришлись как нельзя кстати. Тем более что паровозы промывали щелочными растворами и горячей водой - самое то и для танка.

По сравнению с ручной мойкой, что была у нас до "приобретения" депо, ускорение помывочных работ составило чуть ли не двадцать раз, при несомненно лучшем качестве. А для снятия краски мы применяли пескоструйные агрегаты - пескоструйную обработку запатентовал один американец еще в м году.

А еще нагар, накипь, коррозия, обезжиривание - для всего этого также применялись установки, что были в депо. Одно это значительно снизило трудоемкость ремонта. А сварочное оборудование депо и специалисты - с ними получил ускорение не только наш ремонт, но и производство самоходок на базе танков.

Ведь паровоз состоит не просто из металла, а из довольно толстого металла, который постоянно трескается, ломается и рвется. Как правило этот металл - сталь, пусть и малоуглеродистая, типа Ст. Толщина стенок топки - миллиметр - в зависимости от паровоза. Стенки барабанов котлов - миллиметров. Да даже трубы - сравнительно толстостенные металлические конструкции - диаметр жаровых труб - сантиметров с толщиной стенки в 4 миллиметра, дымогарных - 5 с толщиной стенки 2, миллиметра.

И все это надо было заваривать. Так что опыт сварки толстостенных конструкций тут имелся. Правда, сталь на танках была другой - высокоуглеродистой, легированной. Из-за большего количества углерода такая сталь плавилась при более низкой температуре, поэтому, чуть задержишь сварку на одном месте дольше положенного - и пойдет перегрев, который приводит к образованию крупных кристаллов, а это - пониженные прочностные характеристики, и прежде всего - ударная вязкость - такие швы могут разойтись от удара не то чтобы камнем, но снарядом довольно мелкого калибра.

Поэтому сварку ведут постоянным током обратной полярности, так как на аноде более горячее место - на нем выделяется более сорока процентов тепла, тогда как на катоде - на семь процентов меньше. Да еще и на пониженном по сравнению с расчетным токе - все для того, чтобы уменьшить вероятность перегрева. И сварку проводят быстро, поэтому поначалу у нас ее делали только высококвалифицированные сварщики, которые могут четко провести электродом по шву - не задерживаясь, чтобы не возникало перегрева, но и без пропусков, чтобы избежать недовара.

Причем применяли обратно-ступенчатый метод сварки, когда заваривали короткими швами в обратном общему направлению заварки - положат валик сантиметров десять на ближнем к себе участке, ведя электродом по направлению на себя, затем, отступив столько же от дальнего конца свежего валика, снова варят по направлению к себе очередной участок - и когда дойдут до первого наваренного участка - тот тоже начинает нагреваться и отпускается - снимается закалка первого участка.

Затем концом третьего участка снимается закалка второго - и так далее. Ну а если углубление было большим и для его заварки в шве накладывалось несколько валиков, то эти валики перекрывали валики предыдущих участков как минимум на треть. Да и кратер - углубление, остающееся в конце каждого шва - выводили на подкладки из простого железа - то есть подкладку приваливали тем же швом и убирали ее после остывания, а то и оставляли на броне - кратер теперь был в шве этой подкладки, а не в шве, расположенном на броне.

А то еще поверх шва наварят накладку, чтобы дополнительно усилить шов и защитить. В общем - повышенный углерод создавал дополнительные проблемы. Создавали их и легирующие примеси.

Так, их повышенной содержание снижало теплопроводность бронестали - как результат, прилегающая к шву зона такой стали хуже выводит тепло дальше в глубину, из-за чего она получает закалку, которая потом приведет к трещинам или повышенной хрупкости.

С этим боролись, накладывая еще один дополнительный - отжигающий - валик шва - каждый последующий валик отпускал закалку, возникшую из-за предыдущего, и если не класть отжигающий - уже как бы и лишний - то останется закалка от последнего валика. Причем положить этот валик надо аккуратно - в двух-трех миллиметрах от края шва - так, чтобы он отжег нижележащий валик, но вместе с тем не закалил новую порцию основного металла.

С легирующими примесями есть еще одна беда - они выгорают, то есть соединяются с кислородом, как результат - в металле шва образуются тугоплавкие оксиды, снижающие прочность. То есть при сварке легированных сталей возникала задача допустить к месту сварки как можно меньше кислорода. С этим мы боролись несколькими способами. Края будущего шва тщательно зачищались, чтобы в них было как можно меньше ржавчины - этим занимались "подмастерья".

Также применяли электроды с толстой обмазкой, чтобы максимально затруднить доступ воздуха - при разложении обмазки под действием высокой температуры такие электроды дадут больше газов, да и сами электроды выделывали из бронестали, чтобы они хоть как-то компенсировали расход легирующих добавок. Сварка в среде углекислого газа не подойдет - он сам содержит кислород и под высокой температурой разлагается, а образующийся при этом углерод науглероживает сталь шва и ее свойства меняются не в лучшую сторону - сталь становится тверже, но и более хрупкой, что для танка плохо.

Не подойдет и водород - он насыщает металл шва и также делает его хрупким из-за газовых пузырей. Избранные документы по вопросам чрезвычайных ситуаций и медицины катастроф в Российской Федерации 3. Служба медицины катастроф 3. Особенности оказания первой медицинской помощи при массовых поражениях Глава 4. Общие принципы выживания 4. Определение собственного местоположения 4. Защита от неблагоприятного воздействия факторов природной среды 4. Организация аварийного бивака 4. Установление связи и подготовка средств сигнализации 4.

Опасности встреч с хищными зверями 4. Организация и наведение переправ через водные преграды 4. Переправы над водой 4. Переправа реки вброд 4. Передвижение по замерзшим озерам и рекам 4. Движение по болоту 4. Организация и проведение туристского похода 4.

Способы переноски пострадавшего Глава 5. Социальные и демографические характеристики формирования здорового образа жизни.

Здоровый образ жизни и его составляющие 5. Здоровый образ жизни — необходимое условие безопасности жизнедеятельности Часть II. Закрытые повреждения 6. Растяжения и разрывы связок 6. Открытые повреждения 6. Первая помощь при кровотечении 6. Первая помощь при обмороке, воздействии низких и высоких температур 6. Первая медицинская помощь при болях 6. Первая медицинская помощь при внезапных заболеваниях 6.

Острые заболевания центральной нервной системы 6. Аллергические реакции 6. Общие принципы диагностики и оказания неотложной помощи при отравлениях 6.

Укусы и заболевания вследствие контакта с животными и насекомыми 6. Принципы и методы реанимации Глава 7. Общие принципы ухода за больными 7. Техника измерения температуры тела 7. Причины и типы лихорадок. Уход за больными при ознобе, лихорадке 7.

Понятие об артериальном давлении и его измерение 7. Методики определения пульса, дыхания, их оценка 7. Промывание желудка 7. Ванны гигиенические, общие и местные лечебные 7. Различают следующие виды безопасности: Дети дошкольного и школьного возраста травмируются не только во время стихийных бедствий, в военных ситуациях, но и в быту, в школе, при транспортных катастрофах. Организм ребенка значительно тяжелее реагирует на повреждения, что связано с недостаточным развитием жизненно важных систем, несовершенством компенсаторных возможностей.

Некоторые повреждения влекут за собой тяжелейшие травматические состояния, которые могут привести к смертельному исходу. При массовых травмированиях людей чрезвычайно важным является быстрое, четкое, умелое оказание первой медицинской помощи на месте происшествия, в очаге поражения.

Следует быстро и грамотно оказывать первую медицинскую помощь, особенно детям. Если первую медицинскую помощь оказывают люди, не имеющие специального медицинского образования, то тяжелое состояние пострадавших, наличие серьезных и нередко множественных повреждений может привести к их суетливости во время оказания помощи. При этом нередко используются взаимоисключающие, а иногда и вредные средства, предпринимаются недопустимые действия.

Вот почему есть необходимость обучения населения правилам и методам оказания первой помощи. От того, насколько быстро и правильно оказана первая помощь, во многом зависят сохранение жизни пострадавшему и результаты последующего восстановительного лечения. В решении данной задачи важную роль играют работники образовательных учреждений.

Они должны знать и пропагандировать диагностику повреждений и оказания первой медицинской помощи. Литература, посвященная этой теме, обширна, однако разобраться в ней и выбрать необходимые сведения достаточно трудно. ОТ АВТОРОВ Безопасность жизнедеятельности — это область научных знаний, охватывающая теорию и практику защиты человека от опасных и вредных факторов во всех сферах человеческой деятельности. Настоящая книга адресована в первую очередь студентам педагогических вузов, молодым учителям и воспитателям.

В данном учебном пособии систематизирован минимум информации, необходимой в различных природных, производственных и бытовых условиях для сохранения жизни и здоровья в критических ситуациях. Специальные разделы посвящены критическим ситуациям, в которые могут попадать дети и подростки. Особое внимание уделено проблеме наркомании, приобретающей катастрофические размеры в России и странах СНГ. Воздействия, способные вызывать негативные нарушения в самочувствии и здоровье людей, называются опасностями.

Все опасности по источникам их возникновения принято делить на естественные и антропогенные. Естественные опасности возникают при стихийных явлениях в биосфере — таких, как землетрясения, наводнения, ураганы, циклоны, лавины.

Характерной особенностью естественных опасностей является неожиданность их возникновения, хотя некоторые из них человек научился предсказывать, например, ураганы, цунами. Естественные опасности относительно стабильны по времени и силе воздействия.

Возникновение антропогенных опасностей связано, прежде всего, с активной техногенной деятельностью человека. Источниками антропогенных опасностей являются люди, а также технические средства, здания, сооружения, транспортные магистрали — все, что создано человеком. Ущерб от антропогенных опасностей тем выше, чем больше плотность и энергетический уровень используемых техногенных средств.

Рост негативного влияния, как правило, обусловлен нарушениями технологических рекомендаций, трудовой дисциплины и, что самое главное, — отсутствием необходимых знаний о причинах возникновения опасностей и о последствиях, возникающих в зонах действия опасностей.

По характеру воздействия на человека все опасности разделяются на вредные и травмирующие. Вредные воздействия приводят к ухудшению самочувствия человека или к заболеванию если воздействие продолжительно. Аналогично влияние на организм повышенного шума, вибраций, электромагнитных полей, ионизирующих излучений. Так, работа при недостаточном освещении приводит к более быстрому в 1, раза утомлению, а в условиях повышенных температур снижается производительность труда, организм обезвоживается, теряя с водой витамины и соли.

Травмирующие воздействия приводят к травмам и гибели людей при однократном действии, характеризуются неожиданностью и быстротой. Электрический ток, падающие предметы, действие подвижных частей различных установок и средств транспорта, падение, разгерметизация систем повышенного давления, часто приводящая к взрывам и пожарам, — все это травмирующие факторы.

Ежегодно в мире в сфере промышленного производства погибает до тыс. К негативным воздействиям на организм человека относят также острые и хронические отравления. Острым отравлением называют заболевание, возникающее после однократного воздействия токсичного вещества на организм человека. Обычно это происходит при авариях, когда содержание токсичных веществ в атмосферном воздухе резко возрастает, или при употреблении продуктов, содержащих большое количество токсинов. На производстве и в быту регистрируют пищевые отравления пестицидами, метиловым спиртом, различными растворителями.

Хроническим отравлением называют заболевание, развивающееся после систематически длительного воздействия токсичных веществ в дозах, значительно меньших, чем при остром отравлении. Например, в организме человека постепенно накапливаются соединения свинца и марганца, а также пары ртути. При действиитравмирующих факторов начеловека возникают негативные последствия, которые можно разделить на первичные и отдаленные.

Первичные последствия характерны для травмоопасных воздействий и острых отравлений. Они сопровождаются различными травмами или гибелью людей. Отдаленное действие вредных факторов проявляется через заболевания, сокращение продолжительности жизни, снижение рождаемости и ухудшение здоровья новорожденных и детей. Загрязнение среды обитания стало одной из основных причин сокращения продолжительности жизни населения России. Если в г. Возросла младенческая смертность, в странах СНГ она составляет 25 случаев на 1 тыс.

Оценивая последствия воздействия опасностей на людей, следует признать, что уровень гибели от них ежегодно растет. Опасно негативное действие вредных факторов и для будущих поколений. На всех этапах своего развития человек был тесно связан с окружающим миром. С возникновением высокоиндустриального общества вмешательство человека в природу резко усилилось, стало опасным и грозит в ближайшем будущем превратиться в глобальную угрозу для человечества.

Наиболее масштабным и значительным является химическое загрязнение среды не свойственными ей веществами химической природы. Среди них — газообразные и аэрозольные загрязнители промышленно-бытового происхождения. В частности, накопление углекислого газа в атмосфере усиливает нежелательную тенденцию повышения среднегодовой температуры на планете.

Вызывает тревогу продолжающееся загрязнение Мирового океана нефтью и нефтепродуктами, что может вызвать существенные нарушения газо- и водообмена между гидросферой и атмосферой. Не вызывает сомнений и отрицательное влияние загрязнения почвы пестицидами. В последнее десятилетие экологическое загрязнение многих регионов Земли стало причиной резкого роста заболеваний населения, повышенной детской смертности и нарушений психофизического развития подрастающего поколения.

В последующих разделах рассмотрены основные факторы, оказывающие влияние на состояние биосферы. Начальное загрязнение воздуха не представляло проблемы, ибо люди обитали небольшими группами, сохраняя нетронутой природную среду. И даже значительное сосредоточение людей на сравнительно небольших территориях не сопровождалось серьезными последствиями. За последние лет ситуация значительно ухудшилась. В настоящее время выделяются три основные источника загрязнения атмосферы: Доля каждого из этих источников в общем загрязнении воздуха в разных регионах различна.

Общепризнано, что наиболее сильно загрязняют воздух теплоэлектростанции ТЭСвместе с дымом выбрасывающие в воздух сернистый и углекислый газ, а также металлургические предприятия, особенно цветной металлургии, в результате деятельности которых в воздух попадают оксиды азота, сероводород, хлор, фтор, аммиак, соединения фосфора, частицы и соединения ртути и мышьяка.

В этот список можно включить, кроме того, химические и цементные заводы. Атмосферные загрязнители подразделяют на первичные, поступающие непосредственно в атмосферу, и вторичные, являющиеся результатом превращения первичных. Так, сернистый газ окисляется в атмосфере до серного ангидрида, который взаимодействует с парами воды и образует капельки серной кислоты.

В результате реакции серного ангидрида с аммиаком возникают кристаллы сульфата аммония. Аналогичным образом — путем химических, фотохимических, физико-химических реакций между загрязняющими веществами и компонентами атмосферы — образуются другие вторичные загрязнители. Вредные примеси пирогенного происхождения, содержащиеся в промышленных выбросах. Наибольший ущерб из них наносят следующие: Образуется при неполном сгорании углеродистых веществ. В воздух попадает в результате сжигания твердых отходов, с выхлопными газами и выбросами про 14 Глава 1.

Активно реагирует с составными частями атмосферы, способствует повышению температуры на планете и созданию парникового эффекта.

Ежегодно в атмосферу поступает не менее млн т этого газа. Выделяется в процессе сгорания серосодержащего топлива или переработки сернистых руд. Часть соединений серы выделяется при горении органических остатков в горнорудных отвалах. Образуется при окислении сернистого ангидрида. Конечным продуктом реакции является аэрозоль или раствор серной кислоты в дождевой воде, который подкисляет почву, обостряет тем самым заболевания дыхательных путей человека. Выпадение аэрозоля серной кислоты из дымовых факелов химических предприятий отмечается при низкой облачности и высокой влажности воздуха.

Листовые пластинки растений, произрастающих на расстоянии менее 11 км от таких предприятий, обычно бывают густо усеяны мелкими некротическими пятнами, образовавшимися в местах оседания капель серной кислоты. Предприятия цветной и черной металлургии, а также ТЭС ежегодно выбрасывают в атмосферу десятки миллионов тонн серного ангидрида. Поступают в атмосферу раздельно или вместе с другими соединениями серы.

Основными источниками выброса являются предприятия по изготовлению искусственного волокна, сахара, коксохимические, нефтеперерабатывающие, а также нефтяные промыслы.

В атмосфере при взаимодействии с другими загрязнителями сероводород и сероуглерод подвергаются медленному окислению до серного ангидрида. Основными источниками выброса являются предприятия, производящие азотные удобрения, азотную кислоту и нитраты, анилиновые красители, нитросоединения, вискозный шелк, целлулоид. Источники загрязнения — предприятия по производству алюминия, эмалей, стекла, керамики, стали, фосфорных удобрений. Фторсодержащие вещества поступают в атмосферу в виде газообразных соединений — фтороводорода или пыли фторида натрия и кальция.

Соединения характеризуются токсическим эффектом. Производные фтора являются сильными инсектицидами. Поступают в атмосферу с химических предприятий, производящих соляную кислоту, хлорсодержащие пестициды, органические красители, соду, гидролизный спирт, хлорную известь. Токсичность хлора определяется видом соединения и его концентрацией.

В металлургической промышленности при выплавке чугуна и переработке его на сталь происходит выброс в атмосферу различных тяжелых металлов и ядовитых газов.

Так, в расчете на 1 т передельного чугуна выделяется, кроме 12,7 кг сернистого газа, еще 14,5 кг пылевых частиц, которые включают соединения мышьяка, фосфора, сурьмы, свинца, а также пары ртути и редких металлов. Аэрозоли состоят из твердых или жидких частиц, находящихся в воздухе или другой газовой среде во взвешенном состоянии. Твердые компоненты аэрозолей в ряде случаев особенно опасны для живого организма, а у людей они вызывают специфические заболевания. В атмосфере аэрозольные загрязнения 1.

Значительная часть аэрозолей образуется в атмосфере при взаимодействии твердых и жидких частиц между собой или с водяным паром. Средний размер аэрозольных частиц — мкм. Большое количество пылевых частиц образуется также в ходе производственной деятельности людей. Сведения о некоторых источниках техногенной пыли приведены ниже: Аэрозольные частицы от этих источников отличаются большим разнообразием химического состава.

Чаще всего в них обнаруживаются соединения кремния, кальция и углерода, реже — оксиды металлов: Еще большее разнообразие свойственно органической пыли, включающей алифатические и ароматические углеводороды, соли кислот. Такая пыль образуется при сжигании остаточных нефтепродуктов, в процессе пиролиза на нефтеперерабатывающих, нефтехимических и подобных предприятиях. Постоянными источниками аэрозольного загрязнения являются промышленные отвалы — искусственные насыпи из отходов предприятий перерабатывающей промышленности, а также ТЭС.

Источником пыли и ядовитых газов служат и массовые взрывные работы. Так, в результате одного среднего по массе взрыва т взрывчатых веществ в атмосферу выбрасывается около 12 тыс. Производство цемента и других строительных материалов также является источником загрязнения атмосферы пылью. Основные технологические процессы этих производств — измельчение и химическая обработка шихт, полуфабрикатов и получаемых продуктов в потоках горячих газов — всегда сопровождаются выбросами пыли и других вредных веществ в атмосферу.

К атмосферным загрязнителям относят и углеводороды, источник которых — промышленные предприятия и транспорт. Насыщенные и ненасыщенные углеводороды подвергаются различным превращениям, окислению, полимеризации, взаимодействуя с другими атмосферными загрязнителями после возбуждения солнечной радиацией.

В результате этихреакций образуются перекисные соединения, свободные радикалы, соединения углеводородов с оксидами азота и серы — часто в виде аэрозольных частиц. Обычно это происходит в тех случаях, когда в слое воздуха непосредственно над источниками газопылевой эмиссии существует инверсия — расположение слоя более холодного воздуха под теплым, что препятствует движению воздушных масс и задерживает перенос примесей вверх.

публикации - Skolkovo Community

Вредные выбросы при этом сосредотачиваются под слоем инверсии, содержание их у поверхности земли резко возрастает, что является одной из причин образования фотохимического тумана. Фотохимический туман, или смог, — это многокомпонентная смесь газов и аэрозольных частиц первичного и вторичного происхождения. В состав основных компонентов смога входят озон, оксиды азота и серы, многочисленные органические соединения перекисной природы, называемые в совокупности фотооксидантами.

Смог возникает в результате фотохимических реакций при определенных условиях: Устойчивая безветренная погода в июне-сентябре, реже — зимой создает условия для высокой концентрации реагирующих веществ. В ясную погоду под влиянием солнечной радиации происходит расщепление молекул диоксида азота с образованием оксида азота и атомарного кислорода. При соединении атомарного кислорода с молекулярным кислородом возникает озон. Казалось бы, последний должен окислять оксид азота, снова превращаясь в молекулярный кислород, а оксид азота, в свою очередь, — в диоксид.

Но этого не происходит. Оксид азота вступает в реакцию с олефинами выхлопных газов, которые при этом расщепляются по двойной связи, образуя осколки молекул и избыток озона. В результате продолжающейся диссоциации новые массы диоксида азота расщепляются и дают дополнительные количества озона. Возникает циклическая реакция, в итоге которой в атмосфере постепенно накапливается озон. В ночное время этот процесс прекращается. Озон также вступает в реакцию с олефинами. В атмосфере концентрируются различные перекиси, которые в сумме образуют характерные для фотохимического тумана оксиданты.

Последние являются источником так называемых свободных радикалов, отличающихся особой реакционной способностью. Они крайне опасны, поскольку воздействуют на дыхательную и кровеносную системы организма человека и часто бывают причиной преждевременной смерти городских жителей с ослабленным здоровьем. Загрязнение атмосферы выбросами промышленных предприятий и подвижными источниками выбросов.

Степень загрязнения воздуха основными загрязняющими веществами находится в прямой зависимости от промышленного развития города. Максимальные концентрации характерны для городов с населением более тыс. Загрязнение воздуха специфическими веществами зависит от вида промышленности, развитой в городе. Если в крупном городе размещены предприятия нескольких отраслей промышленности, то создается очень высокий уровень загрязнения воздуха.

В последние десятилетия в связи с быстрым развитием автотранспорта и авиации существенно увеличилась доля выбросов, поступающих в атмосферу от подвижных источников: Наибольшее количество загрязняющих веществ выбрасывается при разгоне автомобиля, а также при движении с малой скоростью.

Относительная доля от общей массы выбросов углеводородов и оксида углерода наиболее высока при торможении и на холостом ходу, а доля оксидов азота — при разгоне. Из этих данных следует, что автомобили особенно сильно загрязняют воздушную среду при частых остановках и при движении с малой скоростью.

Большое влияние на качество и количество выбросов примесей оказывает режим работы двигателя, в частности, соотношение между массами топлива и воздуха, момент зажигания, качество топлива, отношение поверхности камеры сгорания к ее объему и др. При увеличении отношения массы воздуха и топлива, поступающих в камеру сгорания, сокращаются выбросы оксида углерода и углеводородов, но возрастает выброс оксидов азота. Несмотря на то, что дизельные двигатели более экономичны и таких веществ, как оксид углерода СОдиоксид азота NO2выбрасывают не более, чем бензиновые, они дают существенно больше дыма преимущественно несгоревшего углерода, который, к тому же, обладает неприятным запахом, создаваемым некоторыми несгоревшими углеводородами.

А если учесть, что дизельные двигатели производят сильный шум, становится понятно, что они воздействуют на здоровье человека гораздо больше, чем бензиновые двигатели. Хотя суммарный выброс загрязняющих веществ двигателями самолетов сравнительно невелик для города, страныв районе аэропорта эти выбросы вносят определяющий вклад в загрязнение среды.

К тому же турбореактивные двигатели как и дизельные при посадке и взлете выбрасывают хорошо заметный глазу шлейф дыма. Согласно полученным данным, значительная часть топлива тратится на выруливание самолета к взлетно-посадочной полосе ВПП перед взлетом и на заруливание с ВПП после посадки по времени в среднем — около 22 мин.

Доля несгоревшего и выброшенного в атмосферу топлива при рулении намного больше, чем в полете. Существенного уменьшения выбросов можно добиться, помимо улучшения работы двигателей распыление топлива, обогащение смеси в зоне горения, использование присадок к топливу, впрыск воды и др. В течение последних лет большое внимание уделяется исследованию эффектов, которые возникают в связи с полетами сверхзвуковых самолетов и космических кораблей.

Эти полеты сопровождаются загрязнением стратосферы оксидами азота и серной кислотой сверхзвуковые самолетыа также частицами оксида алюминия транспортные космические корабли. Поскольку перечисленные загрязняющие вещества разрушают озон, то первоначально создалось мнение подкрепленное соответствующими модельными расчетамичто планируемый рост числа полетов сверхзвуковых самолетов и транспортных космических кораблей приведет к существенному уменьшению содержания озона, с последующим губительным воздействием ультрафиолетовой радиации на биосферу Земли.

Однако тщательный анализ этой проблемы позволил сделать заключение о слабом влиянии выбросов сверхзвуковых самолетов на состояние стратосферы. Более сильное воздействие на озонный слой и глобальную температуру воздуха могут оказать хлорфторметаны ХФМнапример, фреон и фреон — газы, выделяющиеся, в частности, при испарении аэрозольных препаратов.

Поскольку ХФМ очень инертны, то они распространяются и долго живут не только в тропосфере, но и в стратосфере. В заключение можно отметить, что все эти антропогенные эффекты перекрываются в глобальном масштабе естественными факторами — например, загрязнением атмосферы, вулканическими извержениями. Это одно из вредных для человека загрязнений атмосферы. Раздражающее воздействие звука шума на человека зависит от интенсивности, спектрального состава и продолжительности воздействия.

Шумы со сплошными спектрами действуют менее раздражающе, чем шумы узкого интервала частот. Наибольшее раздражение вызывает шум в диапазоне частот Гц. Работа в условиях повышенного шума на первых порах вызывает быструю утомляемость, обостряет слух на высоких частотах.

Холостяки Новосибирска: 10 парней, которые ищут свою любовь

Затем человек как бы привыкает к шуму, чувствительность к высоким частотам резко падает, начинается ухудшение слуха, которое постепенно переходит в тугоухость и глухоту. При интенсивности шума дБ возникают вибрации в мягких тканях носа и горла, а также в костях черепа и зубах; если интенсивность превышает дБ, то начинают вибрировать грудная клетка, мышцы рук и ног; появляется боль в ушах и в голове, развиваются крайняя усталость и раздражительность.

При уровне шума свыше дБ может произойти разрыв барабанных перепонок. Однако шум губительно действует не только на слуховой аппарат, но и на центральную нервную и сердечно-сосудистую системы человека, служит причиной многих других заболеваний. Мощным источником шума являются вертолеты и самолеты, особенно сверхзвуковые.

Наиболее острый характер проблема шума приобрела в связи с эксплуатацией сверхзвуковых самолетов. С ними связаны шумы, звуковой удар и вибрация жилищ вблизи аэропортов. Современные сверхзвуковые самолеты порождают шумы, интенсивность которых значительно превышает предельно допустимые нормы. Все загрязняющие атмосферный воздух вещества в большей или меньшей степени оказывают отрицательное влияние на здоровье человека. Эти вещества попадают в организм преимущественно через дыхательную систему.

В организме частицы вызывают токсический эффект, поскольку они: В некоторых случаях воздействие одних загрязняющих веществ в комбинации с другими приводит к более серьезным расстройствам здоровья, чем воздействие каждого из них в отдельности. Большую роль играет продолжительность воздействия. Статистический анализ позволил достаточно надежно установить зависимость между уровнем загрязнения воздуха и такими заболеваниями, как поражение верхних дыхательных путей, сердечная недостаточность, бронхит, астма, пневмония, эмфизема легких, а также болезни глаз.

Резкое повышение концентрации примесей, сохраняющееся в течение нескольких дней, увеличивает смертность людей пожилого возраста от респираторных и сердечно-сосудистых заболеваний. Концентрация СО, превышающая предельно допустимую, приводит к физиологическим изменениям в организме человека. Объясняется это тем, что СО — исключительно агрессивный газ, легко соединяющийся с гемоглобином. Степень воздействия оксида углерода на организм зависит не только от его концентрации, но и от времени пребывания экспозиции человека в загазованном СО воздухе.

К счастью, образование карбоксигемоглобина в крови — процесс обратимый: Оксид углерода — очень стабильное вещество, время его жизни в атмосфере составляет мес. При ежегодном поступлении млн т концентрация СО в атмосфере должна была бы увеличиваться примерно на 30 тыс. Однако этого, к счастью, не наблюдается, чем человечество обязано, в основном, почвенным грибам, очень активно разлагающим СО положительную роль играет также переход СО в СО2.

Оксиды азота и некоторые другие вещества. Оксиды азота наиболее ядовит —NO2соединяясь при участии ультрафиолетовой солнечной радиации с углеводородами среди которых наибольшей реакционной способностью обладают олефиныобразуют пероксилацетилнитрат ПАН и другие фотохимические окислители, в том числе пероксибензоилнитрат ПБНозон Озперекись водорода Н2О2NO2.

Эти окислители — основные составляющие смога, который часто возникает в сильно загрязненных городах, расположенных в низких широтах северного и южного полушарий. Оценка скорости фотохимических реакций, приводящих к образованию ПАН, ПБН и озона, показывает, что в ряде южных городов летом в околополуденные часы когда велик приток ультрафиолетовой радиации эти скорости превосходят значения, при которых начинает образовываться смог.

При высокой концентрации ПАН выпадает на землю в виде клейкой жидкости, губительно действующей на растительный покров. Назовем некоторые другие загрязняющие воздух вещества, вредно действующие на человека. Установлено, что у людей, профессионально имеющих дело с асбестом, повышена вероятность раковых заболеваний. Бериллий оказывает вредное воздействие на дыхательные пути, а также на кожу и. Пары ртути нарушают работу центральной нервной системы и почек.

Поскольку ртуть может накапливаться в организме, то в конечном итоге ее воздействие приводит к расстройству умственных способностей человека. В городах вследствие увеличивающегося загрязнения воздуха неуклонно растет число больных, страдающих хроническим бронхитом, эмфиземой, раком легких, различными аллергическими заболеваниями. Влияние радиоактивных веществ на живые организмы. Некоторые химические элементы радиоактивны: При распаде радиоактивного вещества РВ его масса с течением времени уменьшается.

Теоретически вся масса радиоактивного элемента исчезает за бесконечно большое время. Периодом полураспада называется время, по истечении которого масса уменьшается вдвое. Период полураспада для разных РВ варьирует в широких пределах, составляя от нескольких часов до миллиардов лет. Наибольшую опасность представляют РВ с периодом полураспада от нескольких недель до нескольких лет: Распространяясь по пищевой цепи от растений к животнымРВ поступают в организм человека вместе с продуктами питания и могут накапливаться в количестве, способном нанести вред здоровью.

Наиболее опасны среди РВ изотопы стронция 90 Sr и цезия Csони образуются при ядерных взрывах в атмосфере, а также поступают в окружающую среду с отходами атомной промышленности. Благодаря химическому сходству с кальцием 90 Sr легко проникает в костную ткань позвоночных, тогда как l 3 7 Cs накапливается в мышцах. Излучение РВ оказывает губительное воздействие на организм человека — ослабляет иммунитет, снижает сопротивляемость инфекциям.

Результатом является уменьшение продолжительности жизни, сокращение показателей естественного прироста населения вследствие временной или полной стерилизации. Отмечено поражение генов, при этом последствия проявляются лишь в последующих — втором или третьем — поколениях.

Тяжесть последствий облучения зависит от количества поглощенной организмом энергии, излученной радиоактивным веществом радиации. Установлено, что при дозе, превышающей рад, наступает смерть; в случае получения дозы величиной рад человек выживает, однако значительно возрастает вероятность возникновения онкозаболевания, а также полной стерилизации.

Наибольшее загрязнение вследствие радиоактивного распада вызвали взрывы атомных и водородных бомб, испытание которых особенно широко проводилось в гг. Второй источник радиоактивных примесей — атомная промышленность. Примеси поступают в окружающую среду при добыче и обогащении ископаемого сырья, использовании его в реакторах, переработке ядерного горючего в установках. Наиболее серьезное загрязнение среды связано с работой заводов по обогащению и переработке атомного сырья.

Для дезактивации радиоактивных отходов до их полной безопасности необходимо время, равное примерно 20 периодам полураспада это около лет для l37 Cs и тыс.

Вряд ли можно поручиться за герметичность контейнеров, в которых отходы хранятся в течение столь длительного времени. Таким образом, хранение отходов атомной энергетики — это наиболее острая проблема охраны окружающей среды от радиоактивного заражения. Теоретически, правда, возможно создание атомных электростанций с практически нулевым выбросом радиоактивных примесей. Но в этом случае производство энергии на атомной станции оказывается существенно более дорогим, чем на тепловой электростанции.

Поскольку производство энергии, основанное на ископаемом топливе уголь, нефть, газтакже сопровождается загрязнением среды, а запасы такого топлива ограничены, большинство исследователей, занимающихся проблемами энергетики и охраны среды, пришли к выводу: При этом особое внимание следует уделить мероприятиям, исключающим риск радиоактивного загрязнения среды в том числе и в отдаленном будущемв частности, необходимо обеспечить независимость органов по контролю за выбросами от ведомств, ответственных за производство атомной энергии.

Предельно допустимая доза ионизирующей радиации не должна превышать удвоенного среднего значения дозы облучения, которому человек подвергается в естественных условиях. При этом предполагается, что люди хорошо приспособились к естественной радиоактивности среды. В среднем доза ионизирующей радиации, получаемой за год каждым жителем планеты, колеблется между 50 и мрад. Известны группы людей, которые живут в районах с высокой радиоактивностью, значительно превышающей среднюю на нашей планете так, в одном из районов Бразилии жители за год получают около мрад, что в раз больше средней дозы облучения.

Последствия Чернобыльской аварии до сих пор сказываются на жизни миллионов граждан России, Украины и Беларуси, и международная помощь в решении порожденных ею долгосрочных проблем остается крайне необходимой.

В результате Чернобыльской аварии радиоактивному заражению подверглась значительная часть территорий Беларуси, Украины и России. Уровень радиоактивного загрязнения этих территорий значительно превышает естественную радиоактивность среды. При этом отмечается очаговость зон радиоактивного загрязнения.

По данным Министерства здравоохранения Украины, из тыс. Она составляет большую часть любых организмов — растительных и животных. Вода является средой обитания многих организмов, определяет климат и изменение погоды, способствует очищению атмосферы от вредных веществ, растворяет, выщелачивает горные породы и минералы, транспортирует их из одних мест в другие и.

Для человека вода имеет важное производственное значение: Проблема сохранения качества воды является на данный момент самой актуальной. Науке известно более 2,5 тыс.

При этом опасны для водных экосистем не только ядовитые химические, нефтяные загрязнения и избыток органических и минеральных веществ, поступающих со смывом удобрений с полей.

Серьезным аспектом загрязнения водного бассейна Земли является тепловое загрязнение — сброс подогретой воды с промышленных предприятий и тепловых электростанций в реки и озера. Наиболее крупные проблемы термального загрязнения связаны с тепловыми электростанциями. Но несмотря на все недостатки, тепловые электростанции продолжают существовать. Большая часть энергии топлива, которая не может быть превращена в электричество, теряется в виде тепла. Простейшим способом избавления от этого тепла является выброс его в атмосферу.

Однако более экономичный путь состоит в использовании в качестве охладителя воды с ее способностью аккумулировать огромное количество тепла с незначительным повышением собственной температуры, чтобы затем она сама постепенно отдавала тепло в воздух.

Серьезную экологическую проблему представляет прямая прокачка пресной озерной или речной воды через охладитель, и последующее ее возвращение в естественные водоемы происходит без предварительного охлаждения.

Последствия теплового загрязнения естественных водоемов. Повышение температуры в водоемах пагубно влияет на жизнь водных организмов. В процессе эволюции холоднокровные обитатели водной среды приспособились к определенному интервалу температур.

  • Как познакомиться с кормящей женщиной
  • Основы безопасности жизнедеятельности и первой мед помощи_под ред Айзмана и др_Уч пос_2004 -396с
  • Знакомства Новосибирск

Для каждого вида существует температурный оптимум, который на определенных стадиях жизненного цикла может изменяться. Это позволяет организмам приспосабливаться к более высоким или более низким температурам. Большая часть водных организмов быстрее приспосабливается к жизни в более теплой воде, нежели в более холодной. Однако способность к адаптации не имеет абсолютных максимальных или минимальных пределов и меняется в зависимости от вида.

В естественных условиях при медленных повышениях или понижениях температур рыбы и другие водные организмы постепенно приспосабливаются к изменениям температуры окружающей среды.

Но в результате сброса в реки и озера горячих стоков с промышленных предприятий очень быстро устанавливается новый температурный режим, времени для акклиматизации не хватает, живые организмы получают тепловой шок и погибают. Тепловой шок — это крайний результат теплового загрязнения.

Результатом сброса в водоемы нагретых стоков могут быть и иные, более серьезные, последствия. Одним из них является влияние на процессы обмена веществ.